mysqldb是常用的操作mysql的库, 导致sql注入的写法:

3 结语

二叉排序树是一种查找与插入效率均较为高效的数据结构,同时,二叉排序树也是二叉树学习中的重点与难点。希望通过本篇的学习能够掌握二叉排序树的查找、插入与删除等基本操作,也希望读者给出指导意见。

输入命令:git config http.postBuffer 524288000

通过text函数将数值通过参数的形式传入.

1 前言

数据结构中,线性表分为无序线性表和有序线性表。无序线性表的数据是杂乱无序的,所以在插入和删除时,没有什么必须遵守的规则,可以插入在数据尾部或者删除在数据尾部。但是在查找的时候,需要遍历整个数据表,导致无序线性表的查找效率低。有序线性表的数据则相反,查找数据时的时候因为数据是有序的,可以用二分法、插值法、斐波那契查找法来实现。但是,当进行插入和删除操作时,需要维护表中数据的有序性,会耗费大量的时间。那么,我们希望找到一种数据结构,既可以有较高的插入和删除效率,并且具备较高的查找效率,因此,二叉排序树应运而生。

图片 1

from sqlalchemy import textsql = 'select * from user where id = :id'session.execute, {'id':1}).fetchall()

图片 2

之前git中的配置是没有这一项的,执行完以上语句后输入:git config
-l
可以看到配置项的最下面多出了一行我们刚刚配置的内容.
(52428000=500×1024×1024,即500M)

这种方法直接将参数进行拼接正确的写法是:

2 二叉排序树

二叉排序树(Binary Sort Tree),又称二叉查找树(Binary Search
Tree),也称二叉搜索树。二叉排序树或者是一棵空树,或者是具有下列性质的二叉树:

若左子树不空,则左子树上所有结点的值均小于或等于它的根结点的值;若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;左、右子树也分别为二叉排序树;

现有序列:61 87 59 47 35 73 51 98 37 93

构造过程如下:1)索引 i = 0,A[i] = 61,结点61作为根结点,如图2.1:

图片 3图2.1

2)索引 i = 1,A[1] = 87, 87 >
61,且结点61右孩子为空,故81为61结点的右孩子,如图2.2:

图片 4图2.2

3)索引 i = 2,A[i] = 59,59
<61,且结点61左孩子为空,故59为61结点的左孩子,如图2.3:

图片 5图2.3

4)索引 i = 3,A[3] = 47,47 <
59,且结点59左孩子为空,故47为59结点的左孩子,如图2.4:

图片 6图2.4

5)索引 i = 4,A[4] = 35,35 <
47,且结点47左孩子为空,故35为47结点的左孩子,如图2.5:

图片 7图2.5

采用同样规则遍历整个数组得到如图2.6所示的一棵排序二叉树。

图片 8图2.6

由二叉树的递归定义性质,二叉排序树的查找同样可以使用如下递归算法查找。

如果树是空的,则查找结束,无匹配。如果被查找的值和根结点的值相等,查找成功。否则就在子树中继续查找。如果被查找的值小于根结点的值就选择左子树,大于根结点的值就选择右子树。

在理想情况下,每次比较过后,树会被砍掉一半,近乎折半查找。遍历打印可以使用中序遍历,打印出来的结果是从小到大的有序数组。查找代码:

typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */ /* 二叉树的二叉链表结点结构定义 */typedef struct BiTNode /* 结点结构 */{ int data; /* 结点数据 */ struct BiTNode *lchild, *rchild; /* 左右孩子指针 */} BiTNode, *BiTree;/* 递归查找二叉排序树T中是否存在key, *//* 指针f指向T的双亲,其初始调用值为NULL *//* 若查找成功,则指针p指向该数据元素结点,并返回TRUE *//* 否则指针p指向查找路径上访问的最后一个结点并返回FALSE */Status SearchBST(BiTree t, int key, BiTree f, BiTree *p) { if  /* 查找不成功 */ { *p = f; return FALSE; } else if (key == t->data) /* 查找成功 */ { *p = t; return TRUE; } else if (key < t->data) return SearchBST(t->lchild, key, t, p); /* 在左子树中继续查找 */ else return SearchBST(t->rchild, key, t, p); /* 在右子树中继续查找 */}

对于图2.6所示的二叉排序树,若查找结点key为47则可以查找成功,若查找结点key为75,树中不存在key为75的结点,故查找失败,则查找指针p指向查找路径的最后一个结点,即结点73。

二叉排序的插入是建立在二叉排序的查找之上的,插入一个结点,就是通过查找发现该结点合适插入位置,把结点直接放进去。
其实在2.2节中一步步构造二叉排序树的过程中就是结点插入过程。由此可以得出二叉排序树插入规则如下:

若查找的key已经有在树中,则p指向该数据结点。若查找的key没有在树中,则p指向查找路径上最后一个结点。

例如:若在图2.6展示的二叉排序树中插入结点数据为60的结点。首先查找结点数据为60的结点,二叉排序树中不存在结点为60的结点,因此查找失败。此时查找指针p指向查找路径最后一个结点即指向59结点。由于60>59且59结点右子树为空,故将60结点作为59结点的右孩子,插入完成。插入后的二叉排序树如图2.8所示。

图片 9图2.8

插入代码:

struct BiTree { int data; BiTree *lchild; BiTree *rchild;}; //在二叉排序树中插入查找关键字keyBiTree* InsertBST(BiTree *t,int key){ if (t == NULL) { t = new BiTree(); t->lchild = t->rchild = NULL; t->data = key; return t; } if (key < t->data) t->lchild = InsertBST(t->lchild, key); else t->rchild = InsertBST(t->rchild, key); return t;} //n个数据在数组d中,tree为二叉排序树根BiTree* CreateBiTree(BiTree *tree, int d[], int n){ for (int i = 0; i < n; i++) tree = InsertBST(tree, d[i]);}

二叉树的删除可不再像二叉树的插入那么容易了,以为删除某个结点以后,会影响到树的其它部分的结构。删除的时候需要考虑以下几种情况:

1)删除结点为叶子结点;2)删除的结点只有左子树;3)删除的结点只有右子树4)删除的结点既有左子树又有右子树。

考虑前三种情况,处理方式比较简单。例如:若要删除图2.8中的结点93,则直接删除该结点即可。删除后二叉排序树如图2.9所示:

图片 10图2.9

若要删除的结点为结点35,结点35只有右子树,只需删除结点35,将右子树37结点替代结点35即可。删除后的二叉排序树如图2.10所示:

图片 11图2.10

删除只有左子树的结点与此情况类似。

情况4相对比较复杂,对于待删除结点既有左子树又有右子树的情形,最佳办法是在剩余的序列中找到最为接近的结点来代替删除结点。这种代替并不会影响到树的整体结构。那么最为接近的结点如何获取呢?可以采用中序遍历的方式来得到删除结点的前驱和后继结点。选取前驱结点或者后继结点代替删除结点即可。例如:待删除的结点为47,图2.8中二叉排序树的中序遍历序列为35
37 47 51 59 60 61 73 87 93
98。则结点47的前驱结点为37,则直接将37结点替代47结点即可。替换后的二叉排序树如图2.11所示:

图片 12图2.11

删除代码:

/* 若二叉排序树T中存在关键字等于key的数据元素时,则删除该数据元素结点, *//* 并返回TRUE;否则返回FALSE。 */Status DeleteBST(BiTree *T,int key){ if /* 不存在关键字等于key的数据元素 */ return FALSE; else { if ->data) /* 找到关键字等于key的数据元素 */ return Delete; else if (key<->data) return DeleteBST->lchild,key); else return DeleteBST->rchild,key); }}/* 从二叉排序树中删除结点p,并重接它的左或右子树。 */Status Delete(BiTree *p){ BiTree q,s; if->rchild==NULL) /* 右子树空则只需重接它的左子树(待删结点是叶子也走此分支) */ { q=*p; *p=->lchild; free; } else if->lchild==NULL) /* 只需重接它的右子树 */ { q=*p; *p=->rchild; free; } else /* 左右子树均不空 */ { q=*p; s=->lchild; while(s->rchild) /* 转左,然后向右到尽头 */ { q=s; s=s->rchild; } ->data=s->data; /* s指向被删结点的直接前驱(将被删结点前驱的值取代被删结点的值) */ if q->rchild=s->lchild; /* 重接q的右子树 */ else q->lchild=s->lchild; /* 重接q的左子树 */ free; } return TRUE;}

图片 13一直卡着

象关系映射(英语:Object Relational
Mapping,简称ORM),
是一种程序设计技术,用于实现面向对象编程语言里不同类型系统的数据之间的转换。从效果上说,它其实是创建了一个可在编程语言里使用的“虚拟对象数据库”.借助OO思想,数据库中的表被映射为Python的类,类的对象代表数据表中的一行记录,所有的DB操作都通过对象方法调用来实现,这些调用在底层被自动转换成SQL语句,在转换过程中,通常会采用parameter
bind的方式保证生成的parameterized
SQL不存在被注入的风险.常用的orm肯定是sqlalchemy.

首先,打开终端,进入项目所在的文件夹;

发表评论

电子邮件地址不会被公开。 必填项已用*标注